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ABSTRACT

The correct choice of function and derivative reconstruction filters
is paramount to obtaining highly accurate renderings. Most filter
choices are limited to a set of commonly used functions, and the
visualization practitioner has so far no way to state his preferences
in a convenient fashion. Much work has been done towards the
design and specification of filters using frequency based methods.
However, for visualization algorithms it is more natural to specify
a filter in terms of the smoothness of the resulting reconstructed
Sunction and the spatial reconstruction error. Hence, in this paper;
we present a methodology for designing filters based on spatial
smoothness and accuracy criteria. We first state our design crite-
riaand then provide an example of a filter design exercise. We also
use the filters so designed for volume rendering of sampled data
sets and a synthetic test function. We demonstrate that our results
compare favorably with existing methods.

Keywords: Interpolation (G.1.1) Approximation (G.1.2) Quadra-
ture and Numerical Differentiation (G.1.4) Picture/Tmage Genera-
tion (1.3.3) Reconstruction (1.4.5)

Other Keywords: Volume Rendering, Filter Design, interpola-
tion, derivatives

1. INTRODUCTION

The reconstruction of a function and its derivatives from a set of
given samples of that function is a fundamental operation in many
areas. Computer graphics, scientific visnalization, and image pro-
cessing are just a few examples. In all these areas, a set of samples
of an unknown function is usually all we know of that function.
Hence, the reconstruction of the function between sample points is
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rather arbitrary, and one cannot talk about an ideal reconstruction
function. The notion of ideal reconstruction is based on the
assumption, that a given function is a member of a certain func-
tional space, e.g. the L2 space or the bandlimited function space.
This functional space (and therefore the ideal reconstruction
method) is usually determined by the particular application. In
visualization, and in other fields, we assure that the given function
belongs to the space of smooth functions C", where n is an integer.

A very important and often studied space in the class of all smooth
functional spaces, is the space of bandlimited functions (a subclass
of C”). They are often studied in the frequency domain using a
signal processing approach. Although these methods are capable
of controlling global errors such as blurring and aliasing, no local
spatial assessment of their accuracy can be conducted directly. It
turns out that the ideal reconstruction filters for the space of band-
limited functions are impractical to use. Hence research in this area
has focused on finding efficient filters that approximate the ideal
filter [1][41(71[9][10]{14][15].

Another body of work has concentrated on minimizing the local
spatial error for design and evaluation of filters [11][16][17][20].
The local error was measured and minimized using a Taylor series
expansion. Since visual perception, judged by ringing, aliasing and
blurring, was of concern, the frequency behavior of the resulting
filter was discussed. In addition, spatial design gives an easy con-
trol over the size of the filter, and hence on the efficiency of the
resulting filter, a property frequency-based methods do not have.
However, it was found that the sole concern for numerical accu-
racy can lead to discontinuous filters, which can produce visual
artifacts that are easily detected [17]. The goal of this paper is to
overcome this problem by introducing a smoothness requirement
into the filter design process.

All filter designs in the spatial domain have built filters according
to an accuracy criteria. In this paper we introduce, for the first
time, filter design criteria for interpolation and derivative filters
which yield functions with a minimal numerical error and still
maintain good spectral properties. The only assumption that we
require of the original function (represented by the given samples)
is that it is smooth and a member of the functional space C”. We
also show how our design criteria relate to criteria in frequency
domain.

Our filter design is not restricted to cubic polynomial basis func-
tions, but can generate filters of arbitrary smoothness and accu-
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racy. In this paper, we design optimized piecewise polynomial
interpolation filters according to a set of smoothness and accuracy
requirements. These filters are drawn from the set of all piecewise
polynomial filters, a more general class of filters than the popular
BC-splines. Since our methods also apply easily to any derivative
filter design, we find optimal piecewise polynomial gradient filters
as well. Our results, which go beyond the de-facto standard of the
popular cubic BC-splines introduced by Mitchell and Netravali
[16], are summarized in Table 1 and Table 2. These tables provide
a guide to which filters should be used in most applications. Fur-
thermore, we provide the practitioner with an easy and fast way to
design filters that are specific to their applications by determining
an application oriented set of smoothness and accuracy criteria.

The outline of this paper is as follows; Section 2 summarizes pre-
vious research in this field. In Section 3, we introduce the design
criteria that we use in Section 4 to design new filters. In Section 5
we present some experimental results and in Section 6 we suggest
steps for furthering this research. Finally, in Section 7, we summa-
rize our findings.

2. PREVIOUS RESEARCH

Two of the more important and well studied reconstruction algo-
rithms are interpolation and gradient estimation. In volume render-
ing, we must be able to interpolate the function at arbitrary
locations to obtain the volume densities needed for arbitrary view-
ing. The gradient (the first derivative of the function) is employed
in both volume classification and shading [6][13]. If the gradient
estimation is done incorrectly, shading and classification will yield
misleading colors and opacities.

Many researchers have shown that the Sinc filter is an ideal inter-
polation filter for the space of bandlimited functions (a subclass of
C” ). In this space the Cosc filter, which is the analytic derivative
of the Sinc filter, is an ideal derivative filter [11[7][19]. These fil-
ters completely cut off the frequencies above a certain Nyquist fre-
quency. Because of this discontinuity in the frequency domain,
those filters have infinite support in the spatial domain and there-
fore are impractical to use for digital signals. Windowing the Sinc
filter was introduced in order to smoothly limit this filter spatially
[10][19]. Carlbom [4] computed an approximation to a modified
Sinc filter with a minimized Chebychev error. Goss [9] extended
the idea of windowing from interpolation filters to derivative fil-
ters. He used a Kaiser window to mitigate the adverse effects of
the truncated ideal derivative filter. Instead of trying to find a good
approximation to the ideal filter for all frequency ranges, Dutta
Roy and Kumar’s filter design [7] can be easily adapted to find
good approximations for select frequency ranges.

A comparative study by Marschner and Lobb [15] proposed the
use of different error metrics for various reconstruction artifacts of
interpolation filters. These error metrics operate in the frequency
domain and measure the smoothing, post-aliasing, and overshoot
attributes of an interpolation filter. This study showed that the win-
dowed Sinc filter has the best behavior.

In the spatial domain, Keys [11] analyzed a certain class of cubic
splines, also called cardinal splines, using a Taylor series expan-
sion. He showed that, within this class, the Catmull-Rom spline is
optimal in the sense that it interpolates the original function with
the smallest asymptotic spatial error. He also graphically compared
the Catmull-Rom spline with the ideal interpolation filter, noticing

144

that it is suitable for practical applications in computer graphics.
Mitchell and Netravali [16] introduced a more general class of
cubic splines which we refer to as BC cubic splines or in short,
BC-splines. Cardinal cubic splines are a subclass of the BC-
splines. Mitchell and Netravali conducted a study involving more
than 500 sample images, classifying the parameter space into dif-
ferent regions of dominating reconstruction artifacts such as blur-
1ing, ringing, and anisotropy. They found, by using a Taylor series
expansion, that filters for which B+ 2C = 1 are the most numeri-
cally accurate within the class of BC-splines and have an error pro-
portional to the square of the sampling distance. They also found,
through their empirical studies, that these filters, although numeri-
cally superior, are not always visually superior.

Recently, we have shown [17] that the derivative approximation
has a larger impact on the quality of the volume rendered image
than the interpolation operation and therefore deserves a thorough
analysis. Unfortunately, not much work has been done in the spa-
tial design of derivative filters. Bentum et al. [1] use the Cardinal
cubic splines as a basis to constructing the derivative filter through
an analytic derivation of the interpolation filter. Although the
authors illustrate the effect of various parameters on these filters
via a number of frequency plots, they do not analytically compare
the different filters. We (in [17]) have developed tools for the spa-
tial analysis of both interpolation and derivative filters of arbitrary
order. We used a Taylor series of the convolution sum in order to
come up with four evaluation criteria. These criteria include
asymptotic, as well as absolute, local error effects of the filter on
the reconstructed function. We use these criteria in our current
paper as a way to control the numerical error of the filters that we
design. Using the methods developed in [17] we conducted a com-
parison of various derivative (normal vector) reconstruction meth-
ods and classified them into four reconstruction schemes [18].

Since we will employ the results of [17] throughout our paper, we
include a summery here:

2.1 Taylor Expansion of the Convolution Sum

To reconstruct a continuous function f{) or its derivative f°(z) from
a set of sample points f[k], we convolve fI£] with a continuous fil-
ter kernel w. The filter w can be either an interpolation or a deriva-
tive filter. We denote the result of this operation by f*(f).

. . r
Formally, this can be written as:

Fo= 3 fiK-wg-0, o

where T is the sampling distance. Now we can expand

flk] = f(kT) into a Taylor series of N+1 terms about ¢. The
Taylor series expansion at that point would be:
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where /™ (i) is the n-th derivative of fand &, € [1, kT] .
Substituting the Taylor series expansion into the convolution sum

of Equation 1, leads to an alternative representation for the recon-
structed value at a point ¢

SO N




A?
Fo=3 a@f®@+ry (2
n=0

a.(v) = i—? Y E-T)mw(t-k)
k= @
r}:}, o< ( FN+1) @))!ax_l_ I(T)I

or

O =ay @O F D)

max
Ee [((-MT, (i+M)T]

where Tischosensuchthat 1 = (i+1) 7T, with 0<t<1,andiis
an integer. It is noteworthy that the derived error coefficients a
only depend on the offset 7 to the nearest sampling point, i.e., they
are periodic in the sampling distance T. For further details, please
referto [17].

The characterization of the filtering process in Equation 2 imposes
four different criteria for a good reconstruction scheme of the &-th
derivative. First of all, we require ay to be zero for all n smaller
than £. Secondly we have to normalize by 4} in order to recon-
struct the actual derivative as opposed to some multiple of it. Fur-
ther by determining the largest N, such that aj; is zero, we can
determine the asymptotic error behavior of a filter for a decreasing
sampling distance 7. Finzlly, the remainder term r gives us an indi-
cation of the absolute error of that filter.

This expansion of the convolution sum assumes that at least the
first N derivatives of the function f exist, where N depends on our
error analysis. Hence, we assume that the underlying function is a
member of the class of smooth functions CV. This condition is
generally met in practice [2][17][21].

3. DESIGN CRITERIA

‘Whenever we are trying to reconstruct a function from sample
points we are hoping that the reconstruction process performs well
and we don’t get many artifacts. However our understanding of
such terms like good reconstruction as well as artifacts during this
process is usually highly dependent on the specific application.
Most applications share an attempt to recover the original sampled
function as accurately as possible. In order to measure the accu-
racy of the process, one must have an idea about the type of origi-
nal function from which the samples were recovered. As we have
pointed out in Section 2.1, it is not restrictive to most applications
to assume that the original function is continuous to some degree n
and therefore belongs to the class of functions C”. This is the only
assumption, that we require for our filter design.

In addition of hoping for an accurate function reconstruction,
almost all applicatiens will require the reconstruction of a smooth
function. Since we assume a smooth original function, it is natural
to expect a smooth function as the result of the reconstruction pro-
cess. A smooth reconstruction will also guarantee the disappear-
ances of image artifacts in visualization and imaging applications.
Another application is CAD in which designers reconstruct sur-
faces from a set of sample points (knots) using basis functions that
are developed to yield surfaces of cl,Cor higher continuity. The
Teason for smooth function reconstruction is that our visual system
is capable of detecting and enhancing even small discontinuities in
images. For example, in Fig. 2b and Fig. 4b (see color plates) we
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reconstructed a test function (introduced in [15]) and an MRI data
set with a filter that was designed solely by requiring high accu-
racy [17] and therefore yields very little absolute error. It, how-
ever, suffers from discontinuities, leading to a discontinuous
reconstructed function. Consequently, we would like to reconstruct
a function, that is a member of the continuous function space C”.

For practical applications, the efficiency of the reconstruction pro-
cess is of great importance as well. In volume rendering, the effi-
ciency of a reconstruction filter, which is employed routinely many
times [1], is a source of great concern. It is desirable to use as few
samples as possible in order to reconstruct the function at a new
location.

‘We conclude that for general filter design we have to answer three
questions:

» What derivative of the original function do we want to recon-
struct?

» What accuracy do we require from the reconstruction process?

* What space C" should the reconstructed function belong to?

Commonly there is also the question of how many filter weights
should the filter have. We have elegantly answered this question by
minimizing the number of weights and by designing the most effi-
cient filter fulfilling the constraints of the design.

The first two questions can easily be expressed using the frame-
work developed in [17]. Assuming that we want to reconstruct the
k-th derivative of the given digital signal f, we simply require that
all error coefficients ay in Equation 2 be zero, where n < k. Fur-
ther, we require that the coefficient of the kth derivative be one.
Formally, this can be expressed as:

Condition I: @* = 0 forall n<k and aff = 1.

The major goal of the design in spatial domain is numerical accu-
racy. We gain numerical accuracy by requiring the error coeffi-
cients a?’ beyond k to be zero. This leads to what we call N-EF
filters (that is, Error Function of the N order) ([17]):

Condition 2: ay = 0 forall k<n<N+k-1.

1t is no restriction to consider the filter w to be composed of ele-
ments wy, which are defined by

w, = wi(1) = wT+k).

An example of this piecewise decomposition of the filter w is illus-
trated in Fig. 1. Now it is easy to see that the first two conditions
yield an equation system in the unknowns wy. The solution of that
equation system will define a filter w, that fulfills Condition I and
2. Since this is a linear equation system, we can easily solve it
symbolically by Gaussian elimination, which yields a solution for
the wy. This concludes the first step of our function design, defin-
ing a class of filters, that guarantee an N-EF accurate reconstruc-
tion of the kth derivative of the original function.

As we have pointed out earlier, not every filter of this class yields a
continuous reconstructed function and therefore might lead to
undesirable artifacts. Hence, we desire the reconstructed function
to be part of a smooth function space CM. From Equation 1 it is
clear that we need to require our filter w to be in this class. In order
to be a member of C¥, a function w and its M derivatives must all
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FIGURE 1. A piecewise polynomial interpolation filter using
four filter weights w, = wi(1) = w(t+k) . Essentially
the filter has p parts. For both symmetric and anti-symmet-
ric filters p is even.

be continuous everywhere, including every open interval (k% + 1)
for every integer k, and also at all the integer points k themselves.
Since the equation system of Conditions I and 2 yields a piecewise
filter kernel, we can mathematically express the smoothness crite-
Tia as:

Condition 3: wy(t) e C and w™ (1) = w™ (0) forall k and
X k k+1

2l m< M, where w}gm) denotes the m-th derivative of W

After solving the equation system of Conditions I and 2 and deter-
mining the smoothness of the desired filter, we have a new set of
criteria for our filter that needs to be met. In order to design an
actual filter, we have to find a solution that fulfiils all these condi-
tions. While it is not necessary to restrict oneself to piecewise
polynomial filters, we have done so here. The reason for this is that
they are easy to use and implement, and are therefore very popular.
Now Conditions I, 2 and 3 translate to a linear equation system in
the coefficients of piecewise polynomials. The solution of this
equation system yields a class of polynomials. These can be fur-
ther restricted by choosing efficient filters, i.e. with the least num-
ber of filter weights and small degrees of polynomials. This
concludes the filter design. Summarizing the filter design includes
the following steps:

Step 1: Solve a linear equation system created by Conditions 1 and
2in the pieces wy, of the filter w.

Step 2: Choose a set of basis functions for the representation of
Wi

Step_3: Solve for the coefficients of the basis functions, consider-
ing Condition 3 as well as the solution of Step 1.

Our design criteria also have validity in the frequency domain. It
can be shown that our accuracy criteria, defined by specifying the
error coefficients ayf , translate to conditions on the frequency rep-
resentation of the filter w at the DC value. ajf represents the DC
value itself and af the k-th derivative of the frequency spectra at
that point. This is a very desirable condition and was suggested as
a filter design criteria by Dutta Roy et al. [7], for designing maxi-
mal linear filters. Since it is impractical to use an ideal reconstruc-
tion filter (in the c sense), their idea was to design filters that
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come very close to the ideal filter in parts of the frequency spectra
and includes some important frequencies. For general applications,
we would expect to have the most important frequencies around
the DC value.

Since the accuracy criteria only fixes the frequency domain at a
single point, it is not enough to guarantee well behaved filters. Our
smoothness criterion in Condition 3 constructs filters w of the class
CM. That means they can be decomposed (using a Taylor series)
into a polynomial of M* degree and a remainder term. Now, the
polynomial of M™ degree translates into a function defined as
o-(M-1) in frequency space [3]. This guarantees a quick decay
of our reconstruction filter. The higher the smoothness condition,
the quicker the decay. This ensures that aliasing effects of our
designed filter diminish with increasing M.

Having explained the general design process, we turn to demon-
strate it by ways of an example.
4. EXAMPLE

Let us assume we want to construct a derivative filter. We expect
this derivative filter to be somewhat reliable in terms of accuracy,
so we choose a 2EF filter. Further, we aim for a C/ continuous fil-
ter. That leads to three conditions to fulfill:

1. derivative filter:

ao('c) =0
3)
a)(®) =1
2. numerical accuracy 2EF:
ayt) =0 @
3. smoothness Cl;
we C' ®)

Here ak('c) are the error coefficients defined in Equation 2 with a
positive offset 7, 0<t< 1. The filter to be constructed is w.
Decomposing our filter w in pieces wy, as mentioned in Section 3,
we can write the three conditions above in terms of the filter
weights w, = w, (1) = w(T+k). We will use the notation w; and
wy(t) interchangeably. Using the definition of the error coefficients
in Equation 2 will simplify the conditions of Equation 3 through
Equation 5 to:

1. derivative filter:

Wotw +wytw, =0

T(R-Dw o+ (1-T)w_ + (-Dwy+ (-1-7) wy) =1 ©
2. numerical accuracy 2EF:
@2-0w,+ (1-02w_ + (<0 we+ (- 1-7) 2w, = 0 (7)

3. smoothness: (here w’n denotes the derivative of w,)




and
w_,(0) =0
w_,(1) = w_;(0)
w’_l(l) = w'o(O)
w(1) = w'1(0)
wi1) =0

wp & c!
w_(0) =0
w_(1) = w_,(0)
w_(1) = w(0)
wo() = wy(0)
w1 =0

®
and

The choice of the number of filter weights w, (which is the same
as the number of piecewise, non-zero parts of the function w) is
rather arbitrary. If we choose too many, the resulting filter becomes
inefficient. If we choose too few, the equation system might not
lead to a solution at all. Since we are trying to design cost-efficient
filters, we’d like to have as few as possible filter weights. Since, in
computer graphics, we are interested in anti-symmetric derivative
filters (symmetric interpolation filters) and the weights wy(7) are
defined over integer intervals, we always need an even number of
weights (Fig. 1). Conditions 1 and 2 already impose three equa-
tons on the filter weights, thus we expect at least four weights to
be necessary for our resulting filter.

The equation system in Equation 6 and Equation 7 has three equa-
tions in the four unknowns wy. Therefore it is under-determined
and leads to the following set of solutions (setting T to 1):

Wl =W1

3
wy = —3w1 +1:—§

9

w_; = 3w;—-27+2 ©
= —w 1
W_, = _M1+T—§

Any filter w whose filter weights fulfill Equation 9 is guaranteed to
be a 2EF first derivative filter. The actual filter can be constructed
using specific basis functions for the w; and insuring that our
smoothness condition (Equation 8) is fulfilled. An obvious choice
for the C! continuous basis function would be polynomials, since
polynomials are a member of C”. Using our notation

W), = w(T) , we Tequire:

wk('r) = C‘,;:2 +B,T+4,,

where the coefficients Cy, By, A;, are unknown and remain to be
determined. Here again the choice of a second order polynomial is
rather arbitrary. If we choose too high of a degree, we get an ineffi-
cient, parameter depending solution. For too low of a polynomial
degree, we might not get a solution, since not all constraints on the
wy, from Equation 9 and Condition 3 can be fulfilled. Substituting
this definition of the filter weights w, into Equation 8 yields the
following condition on their coefficients:

A,=0
C,+B ,+A , =4,
C;+B+A; =4,
C0+B0+A0 = A1
C,+B;+4,=0

B,=0
2C,+B ,=B;
2C ;+B ; = B,

2C,+B; = B,
2C,+B,=0

and
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Substituting the polynomial definition of the filter weights w, into
Equation 9 yields these conditions on their coefficients:

_ 3
Cy=-3C, By=-3B,+1 Ao=-34A-3
C,=3C, B,=3B-2 A =34+2
C,=-C,  B,=-B+1 1

-2 1 -2 1 A= _Al_i

Further, requiring anti-symmetric filters, yields the following con-
ditions:
w0 =-w_ (1-17),

which translates to

Croy = -C4
B,_,=2C,+B
Ap_1=C+B  +A

in all positive k. This leads to an equation system in the coeffi-
cients, which solved and substituted into Equation 9, leads to the
following filter weights:

12 1
wp = ~zT +1—-2-
wy = %1:2—2':

32 1
W_l = —ET +T+§
w 11:2
-2 = 5

This concludes our filter design of a C! 2EF first derivative filter.

In the Appendix we list all the interpolation and first derivative fil-
ters that we constructed using different accuracy and smoothness
criteria. Because of space constraint we have only given the poly-
nomial coefficients in a matrix M. The filter weights are computed
by:

[w_y(@)
w_,(T) 2
w_ (@ _ ule?
wo(D) 1
wi(1) 1
_W2(T)_

for a cubic filter with 6 weights. The size of M is adapted by the
size of the filter and the degree of the polynomial. All filters are
laid out in a table where the rows represent the smoothness criteria
and the columns represent the accuracy criteria. We have looked at
1EF through 4EF filters and 7 through C? smoothness criteria.
We also included filters that were constructed without Condition 3
- smoothness. That simply leads to discontinuous filters. Those fil-
ters might be of interest for applications that care about accuracy
only, for example in cases where the resulting function is used for
measurement, rather than visual inspection. The advantage of
these filters is that they are sometimes faster while having only lit-




tle (numerical) error. We have argued in [17] that these filters
might even lead to reasonable images under certain conditions and
therefore represent an efficient alternative that should not be dis-
carded.

The most general usable filters are probably €%, C! and 2EF, 3EF
filters. For the interpolation filters we find that the most efficient
C!-3EF filter is the well known Catmull-Rom spline, also found by
others to be the most accurate BC-spline. It is also noteworthy that
this filter is not the best filter in the class of cubic BC-splines in
terms of smoothness. We also found that the BC-filter for which
B=1 and C=0is a C>-2EF filter. Therefore this filter might be pref-
erable over the Catmull-Rom spline for some applications. In order
to improve on the Catmull-Rom filter in terms of accuracy one
Tequires 6 filter weights. In order to improve smoothness of the
reconstructed function while maintaining the same accuracy, one
has to choose at least a fourth degree polynomial. The best filter
with just 2 filter weights would be either a 2EF or a C> continuous
filter.

For derivative filters, the filter CI-2EF is probably a good first
derivative filter. It is one of the best possible that only requires 4
filter weights and 3s still only a guadratic filter. In order to improve
on it, we would either have to go to 6 filter weights or to a fourth
degree polynomial. It is also interesting to note, that this filter is
the analytic derivative of the C>-2EF interpolation filter, which
was a BC-spline with B=1 and C=0.

5. EXPERIMENTS

The images were rendered employing a simple ray-caster to find
the iso-surfaces. The volumes were sampled at an interval of 0.05
voxel lengths. At each sampling point, the ray-caster first applied
an interpolation kernel (we used the Catmull-Rom cubic spline) to
reconstruct the function at that point. If the reconstructed value
was above a pre-set iso-value, the derivative filter was used to
compute the 3D gradient. Shading was then performed using the
traditional Phong lighting model [8] with diffuse and specular
reflections. The obtained color and opacity were composited with
the previous ray values, and the ray was terminated after the opac-
ity reached a value close to 1.0. Since both the interpolation and
the derivative kernel were separable, for all our filters, the filtering
operations could be efficiently performed using a scheme similar
to the one givenin [1] and [18].

For our experiments we used an analytic data set and an MRI data
set. The analytic data set is derived from the same function as the
one used by Marschner and Lobb [15]. Since, due to spatial con-
straints, it is not possible to include the entire set of images that
can be obtained using all given filters, summarized in Table 1 and
Table 2, we have chosen the discontinuous and C? 1EF filters as
well as the discontinuous and C? 3EF filters. Fig. 2 (Fig. 24,5in
color plates) shows the synthetic data set. In order to better visual-
ize the influence of the filters we also computed the angular error
images. For each reconstructed normal we computed the actual
normal and recorded their angular difference. The grey value of
255 was displayed for an angular error of 15 degrees. The discon-
tinuous 1EF filter is simply the well known central difference filter,
and the discontinucus 3EF filter is the filter that we have found to
be a filter yielding better accuracy in our previous work [17]. Here
itis clearly visible, that filter design solely based on accuracy crite-
ria will not lead to acceptable images. Adding a simple smoothness
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constraint, which is reflected in the C? filters, results in very accu-
rate images that are free of visible astifacts. It also becomes very
clear, especially in the error images of Fig. 3, that the 3EF filter

) J
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©
FIGURE 3. Error images of the Marschner Lobb data set ren-
dered using the following derivative filter (a) discontinuous
1EF (b) discontinuous 3EF (c) C’-1EF (d) CO-3EF: darker
colors mean lesser error

The same behavior as for the analytic data set can also be observed
for the MRI data set in Fig. 4. This data set is a close up view of an
MRI of a human brain. Here, we also fixed the interpolation filter
to the Catmull-Rom filter and varied the derivative filter in the
same way as we did for the Marschner Lobb images.

Another application requiring smooth reconstruction filters is the
size preserving pattern mapping of Kurzion et al. [12]. Here, the
problem is to continuously map a texture to a parametric surface or
implicit surface, including volumetric iso-surfaces, at a constant
density. In the past, only manual mappings were able to perform
this task, while this paper introduces an automatic method. The
authors use the curvature of a surface at a point in order to continu-
ously vary the scale of the mapped image. This curvature is
approximated using the derivative of the underlying function. A
! continuous filter is essential for the success of this method as it
ensures continuous mapping of texture on the surface. We used a
16° grid (a shrunken down version of the original 128 head) for
calculating the curvature. This means that the head is composed of
rectangular patches on which the normal derivative is calculated
by the same 4° grid samples. Fig. 5a uses the central difference fil-
ter, which gives a very poor estimation of the curvature, hence the
mapping of the density varies sharply between patches. Fig. 5b
uses a CY-2EF filter that generates a very constant density across
the head, but shows discontinuities along the patch lines. The filter
we designed for this application is the C! continuous 2EF deriva-
tive filter of Table 2. Fig. 5c shows an application of this filter and
we observe that all previous problems no longer exist.




6. FURTHER RESEARCH

Since, in this paper, we restricted ourselves to piecewise polyno-
mial filters, we would like to explore different basis functions.
Especially using trigonometric basis functions like sine and cosine,
we would like to explore possible similarities to windowed Sinc
and Cosc filters. We hope that this might improve the efficiency of
the filters, maintaining the same smoothness and accuracy while
using fewer filter weights.

Our accuracy criteria, as outlined here, have also been used to
specify and design filters in other domains, especially in wavelet-
based multiresolution analyses, by Daubechies and others [5]. We
hope to explore the effect of our smoothness criteria also for defin-
ing new basis functions in the wavelet domain and to study its
effects on the wavelet transform.

In applications of computer graphics, especially scientific visual-
ization, the final image is not just influenced by the interpolation
and derivative method, but sometimes also by a shading equation
and compositing operations. Therefore, it is necessary to analyze
the overall error expressed in the I? error norm. We are working
on developing better tools to study this error. Once we are able to
characterize the complete rendering pipeline, we might be able to
adapt the reconstruction filters in a way to compensate for the
overall error and to produce better images.

7. CONCLUSIONS

In this work, we have introduced desiga criteria for the design of
optimal and smooth reconstruction filters. It was demonstrated,
contrary to previous beliefs, that it is not sufficient to base filter
designs just on accuracy criteria. Rather, our design criteria are not
only the accuracy of the reconstructed function, but also its charac-
terization as a function in the space C¥ of all M-times continuous

derivable functions. We further demonstrated, by ways of an .

example, a Cl2EF filter, how such a filter can be constructed. We
then provided a table, listing all optimal interpolation and deriva-
tive filters that match smoothness and accuracy criteria of up to €3
continuous and 4EF, respectively. These tables may serve as a
guide on what filters should be used for a certain application. The
filters listed in these tables go much beyond the very popular class
of piccewise polynomial filters, described in the past by Mitchell
and Netravali’s BC-splines [16]. Furthermore, this paper gives the
practitioner an easy way to design specific filters to match their
specific application, by determining a very application oriented set
of criteria - smoothness and accuracy.
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10. APPENDIX

10.1 Imterpolation filters

TABLE 1. the new actual filters for interpolation filters
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10.2 First Derivative filters

TABLE 2. the new actual derivative filters
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Cover Image Credits

Front Cover

Virtual Endoscopy - A voxel-based colon, colored using a texture of a human tissue.

Reference: “Coloring Voxel-Based Objects for Virtual Endoscopy,” Omer Shibolet, Daniel Cohen-Or, pp- 15-22.
Back Cover

Top:

Volume Rendering of a Bolt Using Wavelet Based Adaptive Interpolation

Reference: “Wavelet Based Adaptive Interpolation For Volume Rendering,” Ricardo Sdnchez, Marcelo Carvajal, pp.
127-134.

Middle Left:
Rendered images of the sloth CT volume with SOM-PNN segmentation.

Reference: “Probabilistic Segmentation of Volume Data for Visualization Using SOM-PNN Classifier,” Feng Ma, Wenping
‘Wang, Wai Wan Tsang, Zesheng Tang, Shaowei Xia, pp- 71-78.

Middle Right:

The hypervolume rendering technique combined with the scalar topology enhancement is used to produce four different
views of a 5-dimensional scalar field. The dataset is the interaction potential of a receptor protein with respect to a ligand
molecule for any independent protein translation along the X,Y,Z axes and rotation around the X and Y axes (assuming
rough symmetry of the ligand with respect to the Z axis). The transfer function of the hypervolume is modulated to enhance
in red, regions of attraction of the ligand towards the receptor, and in blue, regions of high repulsion (interior of the recep-
tor). Green regions show configurations of free movement. The scalar topology enhances the existence of short steepest
descent paths from high attraction to high repulsion regions that might be favorable for the docking of the two molecules.

Reference: “Hypervolume Visualization: a Challenge in Simplicity,” C. Bajaj, V. Pascucci, G. Rabbiolo, D. Schikore, pp-
95-102.

Bottom:

Left: Separate interpolation of color and opacity. Middle: Opacity-weighted interpolation of colors. Right: Normalized dif-
ference image. Data courtesy of Dr. Ramani Pichumani, Stanford University.

Reference: “Opacity-Weighted Color Interpolation for Volume Sampling,” Craig M. Wittenbrink, Thomas Malzbender,
Michael E. Goss, pp. 135-142.
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Figure 6: CSG meodel from the original Constructive Cubes paper.

Figure 8: X-29 CSG model surface evaluation utilizing distance

volumes.
Figurvt 7.: Improved surface evaluation utilizing distance volumes Figure 9: Dart CSG model surface evaluation utilizing distance
on a similar model. volumes.

3D Scan Conversion of CSG Models into Distance Volume
David E. Breen, Sean Mauch, Ross T. Whitaker
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Coloring Voxel-Based Objects for Virtual Endoscopy
Omer Shibolet, Daniel Cohen-Or
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Using Distance Maps for Accurate Surface Reconstruction in Sampled Volumes
Sarah E E Gibson
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Figure 14: Perspective projection with 2 x 2 x 2 convolution. Figure 17: Perspective projection with 3 x 3 x 3 convolution.

Figure 15: Perspective projection by resampling the nearest neigh- Figure 18: Parallel projection with 3 x 3 x 3 convolution.
bor voxels.

Figure 19: Screen-to-Object perspective projection by interpola-
Figure 16: Perspective projection with 3 x 3 x 3 convolution. tions using multi-resolution datasets.

A Real-Time Volume Rendering Architecture Using an Adaptive Resampling Scheme
for Parallel and Perspective Projections
Masato Ogata, TakaHide Ohkami, Hugh C. Lauer, Hanspeter Pfister

164

—— ———— e epn



Figure 7: Volumetric Insect and its Skeleton

Tree.
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Figure 8: Deforming a Medical Dataset: (a) Part
of the Human Trachea (512x512x181, 119,934
voxels) (b) with a sharp bend. The bend is
smooth despite the sharp angle.

Volume Animation using the Skeleton Tree
Nikhil Gagvani, Dilip Kenchammana-Hosekote, Deborah Silver
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(a) Data-set of a voxelized geometry without shadows (b) Data-set of a voxelized geometry with shadows

Figure 7: Comparison of shadowed and unshadowed texture-based volume rendering of a geometrical data-set. This 128x128x64 voxel sized
data-set was generated to control the correct calculation of the shadows. The images were rendered using 256 parallel textured planes. In the
scene there is the large red block on the top with the four smaller green blocks below, that have different transparencies. In the shadowed
image you can how the different green blocks cast different shadows on the ground and how the shadow of the red block appears different on
the green blocks. You can also see the fake diffuse illumination effect here, because surfaces that face away from the light source are darker
than others.

(2) Ultrasound data-set of fetus rendered without shadows (b) Ultrasound data-set of fetus rendered with shadows

Figure 8: Screenshots from a volume rendering with the 128x128x64 voxel sized data-set mapped as a 3D-texture onto 256 parallel planes.
Note, how the shadow casts from the fetus” arm onto its face. Although the shadowed image looks more realistic, there are some details
covered by the shadow. But the data-set can now be explored by interactively moving the light source, so details will be revealed that cannot
be seen in the unshadowed image.

Adding Shadows to a Texture-Based Volume Renderer
Uwe Behrens, Ralf Ratering
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Figure 11: Rendering the test volume with (a) ER-Perspective with Bartlett filter and (b) Novins et al.
algorithm with a bor filter. There is slight, but noticeable, reduced aligsing for the Bartlett filter.

Figure 12: Comparison of perspective volume rendering methods. Rows are different methods: (a} Under-
sampling, (b) ER-Perspective, (c) Oversampling. Column / is a Lateral Geniculate Nucleus (LGN) neuron.
Columns 1 through 3 are our 256° test volume with different configuration parameters: (1) A volume with
3 checkered subblocks, the eyepoint is at (128,128,-128) rendererd with a 90deg field-of-view. (2) A vol-
ame with 5° subblocks rendered from (128,128,-64) with a 127 deg field-of-view. (3) Also a volume with 57
subblocks although it is rendered from (128,128,-128) with a 90 deg field-of-view.

‘Adaptive Perspective Ray Casting
Kevin Kreeger, Ingmar Bitter, Frank Dachille, Baoquan Chen, Arie Kaufman
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Figure 10c. Images obtained from a virtual navigation inside human nasal cavity. The
images in the top row are rendered with conventional splating algorithm. The images in
the bottom row are medered using our new algorithm for edge preservation.

Figure 11c. Images acquired from a navigation through the Hipip dataset (64x64x64). We
first threshold the dataset and get the iso-contour with values between 0.0017 and 0.5, then
render with the splatting approach. The top row corresponds to the conventional splatting,
the bottom row images are results of our new algorithm for edge preservation.

Edge Preservation in Volume Rendering Using Splatting
Jian Huang, Roger Crawfis, Don Stredney
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Fig. 3. Rendered images of the sloth CT volume Fig. 4. Rendered images of the sloth CT volume
with SOM-PNN segmentation. with ML segmentation.

¥ N

Fig. 5. Rendered images of the sloth CT volume Fig. 6. Rendered images of the sloth CT volume
with PNN segmentation. with SOM segmentation.

Fig. 8. Coronally clipped views of the MRI brain case 112_2 with manual segmentation,
SOM-PNN, ML, PNN and SOM segmentations respectively.

Probabilistic Segmentation of Volume Data for Visualization Using SOM-PNN Classifier
Feng Ma, Wenping Wang, Wai Wan Tsang, Zesheng Tang, Shaowei Xia
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Figure 12: Analysis of a magnetic resonance image of a portion of the brain. On the leftis a scatterplot of data value and gradient magnitude;
no clear boundaries are evidenced. In the middle is an automatically generated opacity function of data value, and on the left is the rendered
image. The goal of the visualization was to find the aneurysm; it is the large round shape visible in the lower haif of the image.

Figure 13: Renderings of the feet in the female Visible Human dataset. Inset in each rendered image is the two-dimensional opacity function
used 10 generate it. At the upper-left is the initial automatically generated opacity function and rendering. Editing out a small region of
opacity atlow data value and low gradient magnitude removed the surrounding material from the rendering (upper-right). Careful selection in

the opacity function allows imaging of the registration cord (lower-left). Finally, the bones are visualized by selecting the right-most portion
of the opacity function (lower-right).

Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering
Gordon Kindlmann, James W. Durkin
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Figure 5: Image computed with XMPVO of a 13,000-cell complex.

An Exact Interactive Time Visibility Ordering Algorithm for Polyhedral Cell Complexes
Cldudio T. Silva, Joseph S. B. Mitchell, Peter L. Williams
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Hypervolume Visualization: a Challenge in Simplicity
C. Bajaj, V. Pascucci, G. Rabbiolo, D. Schikore

Figure 1: 5D interaction energy scalar field (Red=attraction, Blue=repulsion, Green=free movement). The axes configuration
isreported on the bottom left (the stretched axis corresponds to a rotational degree of freedom).

Figure 2: 5D interaction energy scalar field (Red=attraction, Blue=repulsion, Green=free movement). Same view as is figure 1
but highlighting only some of the energy components.

Figure 3: 5D interaction energy scalar field (Red=attraction, Blue=repulsion, Green=free movement). Same scalar field as in
figure 1 but from a different view.
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Weigle and Banks, “Extracting Iso-valued Features in 4-dimensional
Scalar Fields"

CCW from upper-left. Figure 3. portion of an isovolume (wire frame)
with an isosurface inside; volume swept by time-varying isosurface.
Figure 4. Sphere-shaped isosurfaces sweeping a volume; the vol-
ume’s envelope; dipole-antenna’s envelope of iso field-strength. Fig-
ure 6. Blobby objects in higher dimensions projecting as inter-
penetrating objects. Figure 7. A family of isosurfaces at different res-
olutions within a single volumetric representation of a torus.
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Figure 10: “Sharpening” of edges with increased raster resolution:
(a) 64°, (b) 128°, (c) 256°, (d) 512°.
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HFigure 3: Experimental error estimation of the surface normal (in »
A\
© C]

degrees) as a function of a sphere parametrization for (aj a Gaus-
sian filter with 0 = 1; (b} oriented box filter (ry = 1.8) with
float precision: and(c) same as (b)withunsigned char pre-
cision.

Figure 11: Voxelized parametric objects: (a) Monge patch, (b)
Moebius strip, (c) ellipsoid, (d) Bezier patches.

Object Voxelization by Filtering
Milos Sramek, Arie Kaufman
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Figure 14. The “Pump’ data set voxelized in 26-separability (left) and 6-separability. They are almost identical visually, but are different
topalogically.

Figure 15. 6-separating voxelization of Bowl (right), Brevi (left), and Connector (middle).

Figure 16. 6-separating voxelization of some cubic surfaces.

An Accurate Method To Voxelize Polygonal Meshes
Jian Huang, Roni Yagel, Vassily Filippov, Yair Kurzion
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Figure 10: Image results of test function. (a) Linear (b) Adaptive Ty=0, T1=2 (c) Adaptive Ty=0, Ty=0 (d) Spline.

©) (d)

Figure 11: Image results of a bolt data set (direct volume rendering mixed with isosurfaces) (a) Linear (b) Adaptive
Tu=20, T1=15 (c) Adaptive Ty=0, T;=0 (d) Spline.

Wavelet Based Adaptive Interpolation For Volume Rendering
Ricardo Sdnchez, Marcelo Carvajal
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Figure 8. Left: Artifacts of separate interpolation of colors and opacity. Right: Improved using opacity-weighted color interpolation.

Figure 9. Left: Separate interpolation of color and opacity. Middle: Opacity-weighted interpolation of colors. Right: Normalized
difference Image. Data courtesy of Dr. Ramani Pichumani, Stanford University.

Figure 10. Three test rendering scenarios: corner, graze; and phase. One plane of the material boundaries has been antialiased during
formation, by using a windowed sinc interpolation.

Figure 11. Left four images: from left, i) Artifacts of separate interpolation of colors, ii) opacity-weighted, iii) difference, iv) equalized
difference. RMS Error 39.0. Right four images: same view and differences of antialiased face. RMS Error 17.7.

Figure 12. Left four images: from left, 1) Artifacts of separate interpolation of colors, ii) opacity-weighted, iii) difference, iv) equalized
difference. RMS Error 20.3. Right four images: same view and differences of antialiased face. RMS Error 8.32

Opacity-Weighted Color Interpolation for Volume Sampling
Craig M. Wittenbrink, Thomas Malzbender, Michael E. Goss
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FIGURE 2. Marschner Lobb data set rendered using the following derivative filter (a)
discontinuous 1EF (b) discontinuous 3EF (c) C*-1EF (d) C’-3EF (e) C3-4EF

FIGURE 5. Size preserving pattern mapping of
a texture on an MRI scan of a human head
using (a) a discontinuous 1EF derivative
filter (central differences) (b) a C’-2EF
derivative filter (c) a C!-2FEF derivative fil-
ter in order to determine the pattern density.

FIGURE 4. MRI data set rendered using the following derivative filter (a) discontin-
uous 1EF (b) discontinuous 3EF (c) C%-1EF (d) C?-3EF

Design of Accurate And Smooth Filters For Function And Derivative Reconstruction
Torsten Méller, Klaus Mueller, Yair Kurzion, Raghu Machiraju, Roni Yagel
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